ガジェット通信 GetNews

見たことのないものを見に行こう

体験を伝える―『ガジェット通信』の考え方

面白いものを探しにいこう 本物を体験し体感しよう 会いたい人に会いに行こう 見たことのないものを見に行こう そしてそれをやわらかくみんなに伝えよう [→ガジェ通についてもっと詳しく] [→ガジェット通信フロアについて]

【詳報・応用編】2018年ノーベル物理学賞はレーザーの革新的な研究とその応用に!(日本科学未来館科学コミュニケーションブログ 科学コミュニケーター 伊達 雄亮 )

【詳報・応用編】2018年ノーベル物理学賞はレーザーの革新的な研究とその応用に!

今回は『日本科学未来館科学コミュニケーションブログ』科学コミュニケーター 伊達 雄亮さんの記事からご寄稿いただきました。

【詳報・応用編】2018年ノーベル物理学賞はレーザーの革新的な研究とその応用に!(日本科学未来館科学コミュニケーションブログ 科学コミュニケーター 伊達 雄亮)

こんにちは!ノーベル物理学賞チーム(通称ぶつりーず)の伊達です。

ノーベル物理学賞チーム

昨日、2018年のノーベル物理学賞が、レーザーの革新的な応用と性能向上に貢献した3人の研究者に授与されました (下図)。

「光ピンセット」の発明と生体システムを解明するツールへの応用につなげたアーサー・アシュキン博士と、高強度の超短パルスレーザー光を生成する方法について研究を行ったジェラール・ムールー博士とドナ・ストリックランド博士です。

それぞれの発明の原理については、昨日、高知尾による解説記事にてご紹介しましたが、今回の記事では、そこで書ききれなかった「その発明がどのように社会で活用されているのか」についてご紹介します。

(1)アーサー・アシュキン博士の研究

アシュキン博士が発明した「光ピンセット」は、細胞やタンパク質などの生体試料を傷つけずに操作できるのが特徴です。この研究により、これまで測ることができなかった生体内の分子モーター1つひとつの動き方を詳細に計測できるようになりました。これにより、生命現象を細胞やタンパク質などの物理的な動きや力として理解できるようになったのです!

分子モーターは、私達の体の中にたくさん存在して生命活動を支えています。例えば、脳の神経細胞の中でタンパク質を運ぶ役割をするキネシンがあります。これは、髪の毛の約10000分の1程度の大きさ (10nm)でとても小さく、そして触ればすぐ壊れてしまう繊細なものです。これらの存在は知られていましたが、どんなどれくらいの力で動くのかを計測する方法がありませんでした。

分子モーター

その計測を可能にした技術が光ピンセットです。光ピンセットでは扱いたい物質を光の焦点に捕捉することができます (下図(1))。粒子が少し動いても (下図(2))、光のエネルギーによって元の位置に戻されることを利用して物体を動かします (下図(3))。

光ピンセット01

光のエネルギーという、生体試料 (タンパク質やDNA)にダメージを与えづらい力で操るため、これらを壊さずに扱うことが可能です。

光ピンセットを使って、キネシンが動くときに発生する力を測る方法を下図に示します。キネシンの先にビーズを付けておき、光ピンセットでビーズを捕捉します (下図(1))。キネシンが動こうとすると、レーザーの焦点からビーズの位置がずれます (下図(2))。このときに、ピンセットの力によってビーズは焦点の方向に引き戻される力を受けます (下図(3))。引き戻される時に発生する力を計測することでキネシンが動くときにどれくらいの力がかかるのか、を計測できます。計測の結果、キネシンが動く力の最大値は約5pN(ピコニュートン)でした。これは、手のひらに乗せたリンゴから手が受ける力の1兆分の1というとても小さい力でした。

光ピンセット02

(2)ジェラール・ムールー博士とドナ・ストリックランド博士の研究

ジェラール・ムールー博士とドナ・ストリックランド博士が発明したのは、強い強度のパルスレーザー光(短い時間で点滅を繰り返す光)を生成するCPA (Chirped pulse amplification)でした。

高強度のパルスレーザーは、瞬間に強いエネルギーを発揮できることから工業分野での微細加工や、精度の高い操作を要する外科医療分野などで、既に広く活用されています。これも、CPAが発明されたおかげなのです。ここでは、CPAが応用されている分野の一つとして、目の矯正手術での活用を紹介します。

レーシックの紹介

超短パルスレーザーは近視や乱視を治療するためレーシック技術に使われています。人間の角膜という繊細な部分を加工するためにこの技術はとても重要なものなのです。

レーシックでは、角膜を削ることでレンズの厚みを変えてより遠くまで見えるようにします。レーシックではより安全な方法を求めて改良が進んでいます。下の絵では、新しい手法として超短パルスレーザーを用いて角膜を部分的に切り取り抜き出しているイラストです。

このように、光ピンセットもCPAも、すでに私たちの社会で広く活用されています。ノーベル財団のプレスリリースでは、「まだ応用の可能性は開拓され切っていない」としながらも、現時点においても人類に大きな恩恵をもたらしていることから、今回の受賞に至ったとしています。

お三方の功績を礎に、これから花開く分野の発展にも期待しましょう!

レーシック

執筆: この記事は『日本科学未来館科学コミュニケーションブログ』科学コミュニケーター 伊達 雄亮さんの記事からご寄稿いただきました。

寄稿いただいた記事は2018年10月08日時点のものです。

寄稿の記事一覧をみる

記者:

ガジェット通信はデジタルガジェット情報・ライフスタイル提案等を提供するウェブ媒体です。シリアスさを排除し、ジョークを交えながら肩の力を抜いて楽しんでいただけるやわらかニュースサイトを目指しています。 こちらのアカウントから記事の寄稿依頼をさせていただいております。

TwitterID: getnews_kiko

  • 誤字を発見した方はこちらからご連絡ください。
  • ガジェット通信編集部への情報提供はこちらから
  • 記事内の筆者見解は明示のない限りガジェット通信を代表するものではありません。